


DEFENDING YOUR BEDROOM FROM NTEs

DECLASSIFIED

tinyLEDtree.com

Quantanalouge™ De-Coherence Field Generator -TECHNICAL DOSSIER: tinyLEDtree.com

Formerly DoNTA/GBI Controlled : Clearance Level Reduced (EvPA/534-D)

Subject: Quantanalouge EvPA Core : Dual-Paired Coupled Oscillator Assembly with
Phase-Shifting Multispectral Non-Ionizing Photonic Emission Array

Diagram: A/B Board Triple-Oscillator Configuration (6-Transistor Design)

This document provides technical analysis of the Quantanalouge™ EvPA Core, a dual-board, triple-oscillator stabilization system featuring a Phase-Shifting Multispectral Non-Ionizing Photonic Emission Array (hereafter, “the Array”; colloquially: color-changing LEDs). The system was previously restricted under DoNTA oversight during the Cold War era. The circuit represents the earliest known attempt to create a low-power EvPA (Evaporation Photonic Acceleration) field using entirely analog hardware.

The system utilizes paired A/B oscillator boards, each containing three S9014 NPN transistors and associated RC timing networks, which together generate the key to a stabilized EvPA field: the Phase-Shifting Multispectral Non-Ionizing Photonic Emission Array. When activated, both boards produce a shifting multi-phase oscillation pattern that forms a low-frequency, non-ionizing photonic interference field. This field, originally documented as the EvPA Stabilization Layer, was classified as highly effective in suppressing resonance cascade anomalies (designated ST, GBI, HL and MH classes).

Unlike digital harmonic generators, or legacy Encabulator-derived systems, the Quantanalouge EvPA Core exploits naturally occurring phase drift between its redundant oscillators. Earlier Encabulator-class devices relied on drawn-reciprocation dingle arms and sinusoidal depleneration to maintain harmonic alignment; the Quantanalouge design instead leverages uncontrolled micro-drift as an intentional source of low-level stochastic interference. This drift, combined with the slow constructive/destructive interference cycle, creates a non-static output pattern that destabilizes and decoheres partial NTE (Non-Terrestrial Entity) manifestations.

****Field Effectiveness:**** Validated as highly effective in suppressing cellulose-derived manifestations of copyrighted villainy, including (but not limited to) Mad Scientists, composite Monsters, Vampiric Entities, “It”-class phenomena, Meta-Humanoid, Unbusted Ghosts, University-Educated Monsters, and related narrative-adjacent entities. Testing logs indicate that the system’s oscillation spread factor remained consistently within the 0.5 to 1.025 ΔHz range, matching early theoretical thresholds for military-grade Meta-Humanoid-class decoherence. Operational radius was measured at 6.96 to 12.81 meters, depending on environmental conditions.

The C-Board assembly provides regulated input power, isolation from battery noise, and mitigation of backflow oscillation—a known failure mode responsible for several early GBI laboratory incidents. The improved stability of this revision indicates that the design originated after the 1984 GBI Event.

Subsequent research into micro-scale EvPA systems suggests that this configuration represents the first successful, fully miniaturized and containment-safe EvPA emitter suitable for consumer-level deployment. This, in turn, explains its rediscovery and repurposing by a civilian startup decades later.

DOCUMENT STATUS: Declassified for public release under Technical Directive 22-19(b). Any modification, replication, or enhancement of this system documentation for EvPA field use must comply with current DoNTA Stability Ordinances, Section VII. Reproduction Rights maintained for future releases and subject to copyright and trademark regulations under penalty of the United States Government, on this date 12/12/2025.